Review Paper: Biomimetic Wound Dressings: Advancements, Applications, and Challenges in Modern Wound Care
Abstract
Wound dressings are critical in managing various injuries, including pressure ulcers, venous ulcers, and diabetic foot ulcers. Various dressing materials are employed in wound care, such as traditional dressings, interactive materials, skin substitutes, bioactive dressings, and dermal grafts. These materials, both synthetic and biological, contribute to effective wound healing by supporting the regeneration of skin tissues. However, biomimetic wound dressings are emerging as a superior alternative to conventional dressings due to their ability to align more closely with the natural wound healing process. Among these, hydrogels are particularly promising for their capacity to replicate the biological properties of human skin, offering enhanced moisture retention, flexibility, and biocompatibility. Biomimetic wound dressings are available in various forms, including films, gauzes, injectable gels, and sprays, catering to different wound types and healing stages. In recent years, the development of novel wound dressings has become a focal point in biomedical engineering, with a strong emphasis on leveraging the benefits of biomaterials. These advanced dressings promote faster healing and offer various advantages, such as reduced infection risk and improved patient comfort. However, despite their potential, biomimetic dressings also present specific challenges, such as production costs and variability in performance across different wound types. This review explores the strengths and limitations of biomaterial-based wound dressings, highlighting their growing significance in modern wound care and future therapeutic applications.
Keywords
Full Text:
Full textReferences
Verbrugghe N, Rubinacci E, Khan AZ. Biomimicry in Architecture: A Review of Definitions, Case Studies, and Design Methods. Biomimetics. 2023;8(1):107. [DOI:10.3390/biomimetics8010107]
Jiao S, Zhang X, Cai H, Wu S, Ou X, Han G, et al. Recent advances in biomimetic hemostatic materials. Mater Today Bio. 2023;19:100592. [DOI: 10.1016/j.mtbio.2023.100592]
Zhang C, Mcadams DA, Grunlan JC. Nano/micro‐manufacturing of bioinspired materials: a review of methods to mimic natural structures. Adv Mater. 2016;28(30):6292–321. [DOI: 10.1002/adma.201505555]
Ma X, Bian Q, Hu J, Gao J. Stem from nature: Bioinspired adhesive formulations for wound healing. J Control Release. 2022;345:292–305. [DOI: 10.1016/j.jconrel.2022.03.027]
Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv wound care. 2014;3(8):511–29. [DOI: 10.1089/wound.2012.0401]
Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. J Appl Polym Sci. 2019;136(27):47738. [DOI:10.1002/app.47738]
Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol. 2010;21(2):77–95. [DOI:10.1002/pat.1625]
Rezvani Ghomi E, Niazi M, Ramakrishna S. The evolution of wound dressings: From traditional to smart dressings. Polym Adv Technol. 2023;34(2):520–30. [DOI:10.1002/pat.5929]
Weller C, Team V. Interactive dressings and their role in moist wound management. In: Advanced textiles for wound care. Elsevier; 2019. p. 105–34. [DOI:10.1016/B978-0-08-102192-7.00004-7]
Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55(3):185–93. [DOI: 10.1054/bjps.2002.3800]
Swinehart JM. Dermal grafting. Dermatol Clin. 2001;19(3):509–22. [DOI: 10.1016/s0733-8635(05)70291-6]
Schoukens G. Bioactive dressings to promote wound healing. In: Advanced textiles for wound care. Elsevier; 2019. p. 135–67. [DOI:10.1016/B978-0-08-102192-7.00005-9]
Chhabra S, Chhabra N, Kaur A, Gupta N. Wound healing concepts in clinical practice of OMFS. J Maxillofac Oral Surg. 2017;16:403–23. [DOI: 10.1007/s12663-016-0880-z]
Singh S, Young A, McNaught C-E. The physiology of wound healing. Surg. 2017;35(9):473–7. [DOI:10.1016/j.mpsur.2017.06.004]
Rani Raju N, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR. Multifunctional and Smart Wound Dressings—A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics. 2022;14(8):1574. [DOI: 10.3390/pharmaceutics14081574]
Boateng J, Catanzano O. Advanced therapeutic dressings for effective wound healing—a review. J Pharm Sci. 2015;104(11):3653–80. [DOI: 10.1002/jps.24610]
Nguyen HM, Le TTN, Nguyen AT, Le HNT, Pham TT. Biomedical materials for wound dressing: Recent advances and applications. RSC Adv. 2023;13(8):5509–28. [DOI: 10.1039/d2ra07673j]
Junker JPE, Kamel RA, Caterson EJ, Eriksson E. Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv wound care. 2013;2(7):348–56. [DOI: 10.1089/wound.2012.0412]
Shi C, Wang C, Liu H, Li Q, Li R, Zhang Y, et al. Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol. 2020;8:182. [DOI: 10.3389/fbioe.2020.00182]
Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, et al. Epithelialization in wound healing: a comprehensive review. Adv wound care. 2014;3(7):445–64. [DOI: 10.1089/wound.2013.0473]
Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 2022;17(3):353–84. [DOI: 10.1016/j.ajps.2022.01.001]
Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, et al. Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel). 2019;12(20):3323. [DOI: 10.3390/ma12203323]
Bombin ADJ, Dunne NJ, McCarthy HO. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater Sci Eng C. 2020;114:110994. [DOI: 10.1016/j.msec.2020.110994]
Biswal T, BadJena SK, Pradhan D. Sustainable biomaterials and their applications: A short review. Mater Today Proc. 2020;30:274–82. [DOI:10.1016/j.matpr.2020.01.437]
Sheokand B, Vats M, Kumar A, Srivastava CM, Bahadur I, Pathak SR. Natural polymers used in the dressing materials for wound healing: Past, present and future. J Polym Sci. 2023, 61(14), 1389. [DOI:10.1002/pol.20220734]
Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Kolahchi AR, Mashayekhan S, et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 2017;62:42–63. [DOI: 10.1016/j.actbio.2017.07.028]
Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, Zare M, Ramakrishna S. Collagen‐based biomaterials for biomedical applications. J Biomed Mater Res Part B Appl Biomater. 2021;109(12):1986–99. [DOI: 10.1002/jbm.b.34881]
Zhao Z, Deng J, Fan D. Green biomanufacturing in recombinant collagen biosynthesis: trends and selection in various expression systems. Biomater Sci. 2023; 11(16):5439-5461. [DOI: 10.1039/d3bm00724c]
Gu L, Shan T, Ma Y, Tay FR, Niu L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 2019;37(5):464–91. [DOI: 10.1016/j.tibtech.2018.10.007]
Ayuk SM. Collagen production in wounded fibroblasts in response to low-intensity laser irradiation. University of Johannesburg (South Africa); 2014. [Link]
Bayer IS. Advances in fibrin-based materials in wound repair: a review. Molecules. 2022;27(14):4504. [DOI: 10.3390/molecules27144504]
Abrigo M, McArthur SL, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci. 2014;14(6):772–92. [DOI: 10.1002/mabi.201300561]
Angioletti-Uberti S. Theory, simulations and the design of functionalized nanoparticles for biomedical applications: A Soft Matter Perspective. npj Comput Mater. 2017;3(1):48. [DOI:10.1038/s41524-017-0050-y]
Mbese Z, Alven S, Aderibigbe BA. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers (Basel). 2021;13(24):4368. [DOI: 10.3390/polym13244368]
Okur ME, Karantas ID, Şenyiğit Z, Okur NÜ, Siafaka PI. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci. 2020;15(6):661–84. [DOI: 10.1016/j.ajps.2019.11.008]
Rinoldi C, Kijeńska‐Gawrońska E, Khademhosseini A, Tamayol A, Swieszkowski W. Fibrous systems as potential solutions for tendon and ligament repair, healing, and regeneration. Adv Healthc Mater. 2021;10(7):2001305.[ DOI: 10.1002/adhm.202001305]
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv Mater. 2019;31(1):1801651. [DOI: 10.1002/adma.201801651]
Khan A, Alamry KA, Asiri AM. Multifunctional Biopolymers‐Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect. 2021;6(2):154–76. [DOI:10.1002/slct.202003978]
Mukherjee C, Varghese D, Krishna JS, Boominathan T, Rakeshkumar R, Dineshkumar S, et al. Recent Advances in Biodegradable Polymers–Properties, Applications and Future Prospects. Eur Polym J. 2023;112068. [DOI:10.1016/j.eurpolymj.2023.112068]
Chattopadhyay S, Raines RT. Collagen‐based biomaterials for wound healing. Biopolymers. 2014;101(8):821–33. [DOI: 10.1002/bip.22486]
Suarato G, Bertorelli R, Athanassiou A. Borrowing from
nature: biopolymers and biocomposites as smart wound care materials. Front Bioeng Biotechnol. 2018;6:137. [DOI: 10.3389/fbioe.2018.00137]
Ho TT, Tran HA, Doan VK, Maitz J, Li Z, Wise SG, et al. Natural Polymer‐Based Materials for Wound Healing Applications. Adv NanoBiomed Res. 2024;2300131. [DOI:10.1002/anbr.202300131]
Yu R, Zhang H, Guo B. Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-micro Lett. 2022;14:1–46. [DOI: 10.1007/s40820-021-00751-y]
Przekora A. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro? Cells. 2020;9(7):1622. [DOI: 10.3390/cells9071622]
Karri VVSR, Kuppusamy G, Talluri SV, Mannemala SS, Kollipara R, Wadhwani AD, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93:1519–29. [DOI: 10.1016/j.ijbiomac.2016.05.038]
Dille MJ, Haug IJ, Draget KI. Gelatin and collagen. In: Handbook of Hydrocolloids. Elsevier; 2021. p. 1073–97. [DOI:10.1016/b978-0-12-820104-6.00028-0]
Jaipan P, Nguyen A, Narayan RJ. Gelatin-based hydrogels for biomedical applications. Mrs Commun. 2017;7(3):416–26. [DOI:10.1557/mrc.2017.92]
Khan MUA, Aslam MA, Abdullah MF Bin, Hasan A, Shah SA, Stojanović GM. Recent perspective of polymeric biomaterial in tissue engineering–a review. Mater Today Chem. 2023;34:101818. [DOI:10.1016/j.mtchem.2023.101818]
Seidi F, Yazdi MK, Jouyandeh M, Dominic M, Naeim H, Nezhad MN, et al. Chitosan-based blends for biomedical applications. Int J Biol Macromol. 2021;183:1818–50. [DOI: 10.1016/j.ijbiomac.2021.05.003]
Lo S, Fauzi MB. Current update of collagen nanomaterials—fabrication, characterisation and its applications: A review. Pharmaceutics. 2021;13(3):316. [DOI: 10.3390/pharmaceutics13030316]
Davidson JM. Biochemistry and turnover of lung interstitium. Eur Respir J. 1990;3(9):1048–63. [PMID: 2289553]
Chesterman J, Zhang Z, Ortiz O, Goyal R, Kohn J. Biodegradable polymers. Princ Tissue Eng. 2020;317–42. [10.1016/B978-0-12-818422-6.00019-8]
Ayadi J, Debouba M, Rahmani R, Bouajila J. Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules. 2022;27(18):6008. [DOI: 10.3390/molecules27186008]
Weaver KD. Thermodynamic and kinetic investigations of structure-function relationships in ferric binding protein, transferrin, and hemoglobin. Duke University; 2007. [Link]
Peacock Jr EE. Wound healing and wound care. Princ Surg. 1984;292. [Link]
de Oliveira Assuncao MS. Development of Bio-Instructive Cell-Derived Extracellular Matrix-Based Biomaterials for Wound Healing and Regeneration. The Chinese University of Hong Kong (Hong Kong); 2021. [Link]
Rnjak J, Wise SG, Mithieux SM, Weiss AS. Severe burn injuries and the role of elastin in the design of dermal substitutes. Tissue Eng Part B Rev. 2011;17(2):81–91. [DOI: 10.1089/ten.TEB.2010.0452]
Bibi N. Elastase Responsive Hydrogel Dressing for Chronic Wounds. The University of Manchester (United Kingdom); 2011. [Link]
Yeo GC, Aghaei‐Ghareh‐Bolagh B, Brackenreg EP, Hiob MA, Lee P, Weiss AS. Fabricated elastin. Adv Healthc Mater. 2015;4(16):2530–56. [DOI: 10.1002/adhm.201400781]
Audelo MLDP, Mendoza-Muñoz N, Escutia-Guadarrama L, Giraldo-Gomez D, González-Torres M, Florán B, et al. Recent advances in elastin-based biomaterial. J Pharm Pharm Sci. 2020;23:314–32. [DOI: 10.18433/jpps31254]
Wang B, Yang W, McKittrick J, Meyers MA. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci. 2016;76:229–318. [DOI: 10.1016/j.pmatsci.2015.06.001]
Zhang W, Fan Y. Structure of keratin. Fibrous Proteins Des Synth Assem. 2021;41–53. [DOI:10.1007/978-1-0716-1574-4_5]
Alibardi L. Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives. Int Rev Cytol. 2006;253:177–259. [DOI: 10.1016/S0074-7696(06)53005-0]
Pinheiro De Oliveira Martinez J. Understanding enzyme-mediated keratin hydrolysis and evaluation of new keratin binding peptides. Queensland University of Technology; 2023. [Link]
Bragulla HH, Homberger DG. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified
epithelia. J Anat. 2009;214(4):516–59. [DOI: 10.1111/j.1469-7580.2009.01066.x]
Zieman AG. A role for keratin 16 in the regulation of epithelial differentiation and homeostasis in glabrous epidermis. Johns Hopkins University; 2018. [Link]
Rouse JG, Van Dyke ME. A review of keratin-based biomaterials for biomedical applications. Materials (Basel). 2010;3(2):999–1014. [DOI; 10.3390/ma3020999]
Dan Mogosanu G, Mihai Grumezescu A, Carmen
Chifiriuc M. Keratin-based biomaterials for biomedical applications. Curr Drug Targets. 2014;15(5):518–30. [DOI: 10.2174/1389450115666140307154143]
Rahman S, Gogoi J, Dubey S, Chowdhury D. Animal derived biopolymers for food packaging applications: A review. Int J Biol Macromol. 2023;128197. [DOI:10.1016/j.ijbiomac.2023.128197]
Konop M, Rybka M, Drapała A. Keratin biomaterials in skin wound healing, an old player in modern medicine: A
mini review. Pharmaceutics. 2021;13(12):2029. [DOI: 10.3390/pharmaceutics13122029]
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol. 2022;211:183–97. [DOI: 10.1016/j.ijbiomac.2022.04.216]
Pallikkunnel ML, Joseph TM, Haponiuk JT, Thomas S. Alginate-Based Wound-Healing Dressings. In: Foundation and Growth of Macromolecular Science. Apple Academic Press; 2024. p. 323–51. [DOI:10.1201/9781003370505-16]
Pandit P, Gayatri TN, Regubalan B. Alginates production, characterization and modification. Alginates Appl Biomed Food Ind. 2019;2:21–44. [DOI:10.1002/9781119487999.ch2]
Kuznetsova TA, Andryukov BG, Besednova NN, Zaporozhets TS, Kalinin A V. Marine algae polysaccharides as basis for wound dressings, drug delivery, and tissue engineering: A review. J Mar Sci Eng. 2020;8(7):481. [DOI:10.3390/jmse8070481]
Zhang M, Zhao X. Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol. 2020;162:1414–28. [DOI: 10.1016/j.ijbiomac.2020.07.311]
Hassani A, Avci ÇB, Kerdar SN, Amini H, Amini M, Ahmadi M, et al. Interaction of alginate with nano-hydroxyapatite-collagen using strontium provides suitable osteogenic platform. J Nanobiotechnology. 2022;20(1):310. [DOI: 10.1186/s12951-022-01511-9]
Debele TA, Su W-P. Polysaccharide and protein-based functional wound dressing materials and applications. Int J Polym Mater Polym Biomater. 2022;71(2):87–108. [DOI:10.1080/00914037.2020.1809403]
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–26. [DOI: 10.1016/j.progpolymsci.2011.06.003]
Ghosh M, Halperin-Sternfeld M, Adler-Abramovich L. Bio mimicking of extracellular matrix. Biol Bio-inspired Nanomater Prop Assem Mech. 2019; 1174:371–99. [DOI: 10.1007/978-981-13-9791-2_12]
Yang X, Liu W, Li N, Wang M, Liang B, Ullah I, et al. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater Sci. 2017;5(12):2357–68. [DOI: 10.1039/c7bm00554g]
Deng Y, Shavandi A, Okoro OV, Nie L. Alginate modification via click chemistry for biomedical applications. Carbohydr Polym. 2021;270:118360. [DOI: 10.1016/j.carbpol.2021.118360]
Pal Kaur I, Sandhu SK, Deol PK, Sharma G, Yadav M, Singh M. Material couture for wound healing and regeneration: an overview. Curr Pharm Des. 2015;21(12):1556–74. [DOI: 10.2174/1381612821666150115125717]
Aramwit P. Introduction to biomaterials for wound healing. In: Wound healing biomaterials. Elsevier; 2016. p. 3–38. [DOI:10.1016/B978-1-78242-456-7.00001-5]
Hegde V, Uthappa UT, Altalhi T, Jung H-Y, Han SS, Kurkuri MD. Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications.
Mater Today Commun. 2022;33(1)104813. [DOI:10.1016/j.mtcomm.2022.104813]
Sabzevari R, Roushandeh AM, Mehdipour A, Alini M, Roudkenar MH. SA/G hydrogel containing hCAP-18/LL-37-engineered WJ-MSCs-derived conditioned medium promoted wound healing in rat model of excision injury. Life Sci. 2020;261:118381. [DOI: 10.1016/j.lfs.2020.118381]
Varma R, Varma RS. Mucopolysaccharides-Glycosaminoglycans-of body fluids in health and disease. Walter de Gruyter; 2012. [Link]
Sedláček J, Hermannová M, Mrázek J, Buffa R, Lišková P, Šatínský D, et al. Insight into the distribution of amino groups along the chain of chemically deacetylated hyaluronan. Carbohydr Polym. 2019;225:115156. [DOI: 10.1016/j.carbpol.2019.115156]
Prajapati VD, Maheriya PM. Hyaluronic acid as potential carrier in biomedical and drug delivery applications. In: Functional Polysaccharides for Biomedical Applications. Elsevier; 2019. p. 213–65. [DOI:10.1016/B978-0-08-102555-0.00007-8]
Rizwan M, Gilani SR, Durani AI, Naseem S. Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field. J Adv Res. 2021;33:15–40. [10.1016/j.jare.2021.03.007]
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. Int J Biol Macromol. 2021;186:656–85. [DOI: 10.1016/j.ijbiomac.2021.07.067]
Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol. 2020;151:1012–29. [DOI: 10.1016/j.ijbiomac.2019.11.066]
Sherman L, Sleeman J, Herrlich P, Ponta H. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol. 1994;6(5):726–33. [DOI: 10.1016/0955-0674(94)90100-7]
Ciccone V, Zazzetta M, Morbidelli L. Comparison of the effect of two hyaluronic acid preparations on fibroblast and endothelial cell functions related to angiogenesis. Cells. 2019;8(12):1479. [DOI: 10.3390/cells8121479]
Wang A, de la Motte C, Lauer M, Hascall V. Hyaluronan matrices in pathobiological processes. FEBS J. 2011;278(9):1412–8. [DOI: 10.1111/j.1742-4658.2011.08069.x]
Zhang Z, Zhang L, Li C, Xie X, Li G, Hu Z, et al. Research progress of chitosan-based biomimetic materials. Mar Drugs. 2021;19(7):372. [DOI: 10.3390/md19070372]
Gonil P, Sajomsang W. Applications of magnetic resonance spectroscopy to chitin from insect cuticles. Int J Biol Macromol. 2012;51(4):514–22. [DOI: 10.1016/j.ijbiomac.2012.06.025]
Al Shaqsi NHK, Al Hoqani HAS, Hossain MA, Al Sibani MA. Isolation, characterization and standardization of demineralization process for chitin polymer and minerals from the crabs waste of Portunidae segnis. Adv Biomark Sci Technol. 2020;2:45–58. [DOI:10.1016/j.abst.2020.10.002]
Jin J. Chitosan/PEO blend films crosslinked by genipin as potential membranes for controlled drug release and protein separation. Loughborough University; 2004. [Link]
Chaisson EJ. Epic of evolution: Seven ages of the cosmos. Columbia University Press; 2005. [Link]
Wang Y-W, Liu C-C, Cherng J-H, Lin C-S, Chang S-J, Hong Z-J, et al. Biological effects of chitosan-based dressing on hemostasis mechanism. Polymers (Basel). 2019;11(11):1906. [DOI: 10.3390/polym11111906]
Wilhelm K, Wilhelm D, Bielfeldt S. Models of wound healing: an emphasis on clinical studies. Ski Res Technol. 2017;23(1):3–12. [DOI: 10.1111/srt.12317]
Momin M, Mishra V, Gharat S, Omri A. Recent advancements in cellulose-based biomaterials for management of infected wounds. Expert Opin Drug Deliv. 2021;18(11):1741–60. [DOI: 10.1080/17425247.2021.1989407]
Reshmy R, Philip E, Madhavan A, Arun KB, Binod P, Pugazhendhi A, et al. Promising eco-friendly biomaterials for future biomedicine: Cleaner production and applications of Nanocellulose. Environ Technol Innov. 2021;24:101855. [DOI: https://doi.org/10.1016/j.eti.2021.101855]
Manivasagan P, Oh J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol. 2016;82:315–27. [DOI: 10.1016/j.ijbiomac.2015.10.081]
Pinto MMR, Sánchez AAC, da Costa SM, do Nascimento JHO, Galvão F, de Lima FS, et al. Agarose fibers with glycerol and graphene oxide and functional properties for potential application in biomaterials. Int J Biol Macromol. 2023;253:127204. [DOI: 10.1016/j.ijbiomac.2023.127204]
Bao X, Hayashi K, Li Y, Teramoto A, Abe K. Novel agarose and agar fibers: Fabrication and characterization. Mater Lett. 2010;64(22):2435–7. [DOI:10.1016/j.matlet.2010.08.008]
Xie J, Murugesan S, Linhardt RJ. Physiological, pathophysiological and therapeutic roles of heparin and heparan sulfate. In: Carbohydrate Chemistry, Biology and Medical Applications. Elsevier; 2008. p. 227–51. [DOI:10.1016/B978-0-08-054816-6.00010-0]
Hao C, Xu H, Yu L, Zhang L. Heparin: an essential drug for modern medicine. Prog Mol Biol Transl Sci. 2019;163:1–19. [DOI: 10.1016/bs.pmbts.2019.02.002]
Laner-Plamberger S, Oeller M, Rohde E, Schallmoser K, Strunk D. Heparin and Derivatives for Advanced Cell Therapies. Int J Mol Sci. 2021;22(21):12041. [DOI: 10.3390/ijms222112041]
Conte M. ATTIVITÀ ANTIBATTERICA DI MOLECOLE NATURALI E DI SINTESI SULLA FLORA MICROBICA RISCONTRABILE NEGLI ALIMENTI. [Link]
Morris JA. Heparin-Peptide Interactions. University of Arkansas; 2016. [Link]
Yergoz F, Hastar N, Cimenci CE, Ozkan AD, Tekinay T, Guler MO, et al. Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury. Biomaterials. 2017;134:117–27. [DOI: 10.1016/j.biomaterials.2017.04.040]
Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, et al. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel). 2022;14(18):3791. [DOI: 10.3390/polym14183791]
Udayakumar GP, Muthusamy S, Selvaganesh B, Sivarajasekar N, Rambabu K, Sivamani S, et al. Ecofriendly biopolymers and composites: Preparation and their applications in water-treatment. Biotechnol Adv. 2021;52:107815. [DOI: 10.1016/j.biotechadv.2021.107815]
Gopi S, Amalraj A, Sukumaran NP, Haponiuk JT, Thomas S. Biopolymers and their composites for drug delivery: a brief review. In: Macromolecular Symposia. Wiley Online Library; 2018. p. 1800114. [DOI:10.1002/masy.201800114]
Ahmad A, Mubarak NM, Jannat FT, Ashfaq T, Santulli C, Rizwan M, et al. A critical review on the synthesis of natural sodium alginate based composite materials: An innovative biological polymer for biomedical delivery applications. Processes. 2021;9(1):137. [DOI:10.3390/pr9010137]
Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology. 2015;1(3):161–76. [DOI:10.1016/j.bsbt.2015.08.002]
Alexander A, Khan J, Saraf S, Saraf S. Poly (ethylene glycol)–poly (lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J Control Release. 2013;172(3):715–29. [DOI: 10.1016/j.jconrel.2013.10.006]
Arbade GK, Srivastava J, Tripathi V, Lenka N, Patro TU. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly (ε-caprolactone) electrospun nanofiber scaffolds using poly (ethylene glycol) and poly (L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering. J Biomater Sci Polym Ed. 2020;31(13):1648–70. [DOI: 10.1080/09205063.2020.1769799]
Harun-Or-Rashid M, Aktar MN, Hossain MS, Sarkar N, Islam MR, Arafat ME, et al. Recent Advances in Micro-and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials. Polymers (Basel). 2023;15(23):4563. [DOI:10.3390/polym15234563]
Wang Y, Zhang Y, Su J, Zhang X, Wang J, Tu Q. Preparation of a multifunctional wound dressing based on a natural deep eutectic solvent. ACS Sustain Chem Eng. 2020;8(37):14243–52. [DOI:10.1021/acssuschemeng.0c05754]
Radulescu D-M, Surdu V-A, Ficai A, Ficai D, Grumezescu A-M, Andronescu E. Green synthesis of metal and metal oxide nanoparticles: a review of the principles and biomedical applications. Int J Mol Sci. 2023;24(20):15397. [DOI: 10.3390/ijms242015397]
Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for wound dressings: an up-to-date overview. Molecules. 2020;25(11):2699. [DOI: 10.3390/molecules25112699]
Asadi N, Pazoki-Toroudi H, Del Bakhshayesh AR, Akbarzadeh A, Davaran S, Annabi N. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. Int J Biol Macromol. 2021;170:728–50. [DOI: 10.1016/j.ijbiomac.2020.12.202]
Zhang X, Qin M, Xu M, Miao F, Merzougui C, Zhang X, et al. The fabrication of antibacterial hydrogels for wound healing. Eur Polym J. 2021;146:110268. [DOI:10.1016/j.eurpolymj.2021.110268]
Chen X, Fan M, Tan H, Ren B, Yuan G, Jia Y, et al. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Mater Sci Eng C. 2019;101:619–29. [DOI: 10.1016/j.msec.2019.04.012]
Liang Y, He J, Guo B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano. 2021;15(8):12687–722. [DOI: 10.1021/acsnano.1c04206]
Liang Y, Zhao X, Hu T, Han Y, Guo B. Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J Colloid Interface Sci. 2019;556:514–28. [DOI: 10.1016/j.jcis.2019.08.083]
Li Y, Fu R, Zhu C, Fan D. An antibacterial bilayer hydrogel modified by tannic acid with oxidation resistance and adhesiveness to accelerate wound repair. Colloids Surfaces B Biointerfaces. 2021;205:111869. [DOI: 10.1016/j.colsurfb.2021.111869]
Glance LG, Stone PW, Mukamel DB, Dick AW. Increases in mortality, length of stay, and cost associated with hospital-acquired infections in trauma patients. Arch Surg. 2011;146(7):794–801. [DOI: 10.1001/archsurg.2011.41]
Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis. In: Seminars in liver disease. © Thieme Medical Publishers; 2008;28(1):26-42. [DOI: 10.1055/s-2008-1040319]
Mirani B, Pagan E, Currie B, Siddiqui MA, Hosseinzadeh R, Mostafalu P, et al. An advanced multifunctional hydrogel‐based dressing for wound monitoring and drug delivery. Adv Healthc Mater. 2017;6(19):1700718. [DOI: 10.1002/adhm.201700718]
Farahani M, Shafiee A. Wound healing: From passive to smart dressings. Adv Healthc Mater. 2021;10(16):2100477. [DOI: 10.1002/adhm.202100477]
Mirani B, Pagan E, Ghahary A, Akbari M. A hydrogel-based smart bandage for wound monitoring and treatment. [Link]
Zhang Z, Zhu Z, Zhou P, Zou Y, Yang J, Haick H, et al. Soft bioelectronics for therapeutics. ACS Nano. 2023;17(18):17634–67. [DOI:10.1021/acsnano.3c02513]
Shrivastava S, Trung TQ, Lee N-E. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev. 2020;49(6):1812–66. [DOI: 10.1039/c9cs00319c]
Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403–34. [DOI: 10.1128/CMR.19.2.403-434.2006]
Jeffcoate WJ, Price P, Harding KG. Wound healing and treatments for people with diabetic foot ulcers. Diabetes Metab Res Rev. 2004;20(S1):S78–89. [DOI: 10.1002/dmrr.476]
Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for
cutaneous wound healing. Biomaterials. 2017;122:34–47. [DOI: 10.1016/j.biomaterials.2017.01.011]
Morariu S. Advances in the design of phenylboronic acid-based glucose-sensitive hydrogels. Polymers (Basel). 2023;15(3):582. [DOI: 10.3390/polym15030582]
Rocasalbas G, Tourino S, Torres JL, Tzanov T. A new approach to produce plant antioxidant-loaded chitosan for modulating proteolytic environment and bacterial growth. J Mater Chem B. 2013;1(9):1241–8. [DOI: 10.1039/c2tb00239f]
Han L, Zhang Y, Lu X, Wang K, Wang Z, Zhang H. Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness. ACS Appl Mater Interfaces. 2016;8(42):29088–100. [DOI: 10.1021/acsami.6b11043]
Farazin A, Shirazi FA, Shafiei M. Natural biomarocmolecule-based antimicrobial hydrogel for rapid wound healing: A review. Int J Biol Macromol. 2023;125454. [DOI: 10.1016/j.ijbiomac.2023.125454]
Jin Y, Koh RH, Kim S-H, Kim KM, Park GK, Hwang NS. Injectable anti-inflammatory hyaluronic acid hydrogel for osteoarthritic cartilage repair. Mater Sci Eng C. 2020;115:111096. [DOI: 10.1016/j.msec.2020.111096]
Cabrera-Munguía DA, Caldera-Villalobos M, Flores-Guía TE, Cano-Salazar LF, Claudio-Rizo JA. Composites in Hydrogel State with Nanostructured Components for Biomedical Applications. In: Nanotechnology for Biomedical Applications. Springer; 2022. p. 427–77. [DOI:10.1007/978-981-16-7483-9_19]
Rivero G, da Cunha MDPP, Caracciolo PC, Abraham GA. Nanofibrous scaffolds for skin tissue engineering and wound healing applications. Tissue engineering using ceramics and polymers. Elsevier; 2022. p. 645–81. [DOI: 10.1016/B978-0-12-820508-2.00020-9]
Wei J, Wang B, Li Z, Wu Z, Zhang M, Sheng N, et al. A 3D-printable TEMPO-oxidized bacterial cellulose/alginate hydrogel with enhanced stability via nanoclay incorporation. Carbohydr Polym. 2020;238:116207.[DOI: 10.1016/j.carbpol.2020.116207]
Lu P, Liu R, Liu X, Wu M. Preparation of self-supporting bagasse cellulose nanofibrils hydrogels induced by zinc ions. Nanomaterials. 2018;8(10):800. [DOI: 10.3390/nano8100800]
Wang J, Chen X-Y, Zhao Y, Yang Y, Wang W, Wu C, et al. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano. 2019;13(10):11686–97. [DOI: 10.1021/acsnano.9b05608]
Zhou Z, Pourhashem S, Wang Z, Duan J, Zhang R, Hou B. Distinctive roles of graphene oxide, ZnO quantum dots, and their nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings. Chem Eng J. 2022;439(37):135765. [DOI:10.1016/j.cej.2022.135765]
Singh I, Dhawan G, Gupta S, Kumar P. Recent advances in a polydopamine-mediated antimicrobial adhesion system. Front Microbiol. 2021;11:607099. [DOI: 10.3389/fmicb.2020.607099]
Kiaee G, Dimitrakakis N, Sharifzadeh S, Kim H, Avery RK, Moghaddam KM, et al. Laponite‐based nanomaterials for drug delivery. Adv Healthc Mater. 2022;11(7):2102054. [DOI: 10.1002/adhm.202102054]
Du W, Zong Q, Guo R, Ling G, Zhang P. Injectable nanocomposite hydrogels for cancer therapy. Macromol Biosci. 2021;21(11):2100186. [DOI: 10.1002/mabi.202100186]
Shahrousvand M, Mirmasoudi SS, Pourmohammadi-Bejarpasi Z, Feizkhah A, Mobayen M, Hedayati M, et al. Polyacrylic acid/polyvinylpyrrolidone hydrogel wound dressing containing zinc oxide nanoparticles promote wound healing in a rat model of excision injury. Heliyon. 2023;9(8). [DOI: 10.1016/j.heliyon.2023.e19230]
Wang Y, Adokoh CK, Narain R. Recent development and biomedical applications of self-healing hydrogels. Expert Opin Drug Deliv. 2018;15(1):77–91. [DOI: 10.1080/17425247.2017.1360865]
Spicer CD. Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polym Chem. 2020;11(2):184–219. [DOI:10.1039/C9PY01021A]
Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37(8):1473–81. [DOI: 10.1039/b713009k]
Poustchi F, Amani H, Ahmadian Z, Niknezhad SV, Mehrabi S, Santos HA, et al. Combination therapy of killing diseases by injectable hydrogels: from concept to medical applications. Adv Healthc Mater. 2021;10(3):2001571. [DOI: 10.1002/adhm.202001571]
Wong VW, Gurtner GC, Longaker MT. Wound healing: a paradigm for regeneration. In: Mayo Clinic Proceedings. Elsevier; 2013. p. 1022–31. [DOI: 10.1016/j.mayocp.2013.04.012]
Chouhan D, Dey N, Bhardwaj N, Mandal BB. Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials. 2019;216:119267. [DOI: 10.1016/j.biomaterials.2019.119267]
Sharda D, Attri K, Choudhury D. Future research directions of antimicrobial wound dressings. Antimicrob Dressings. 2023;229–46. [DOI:10.1016/B978-0-323-95074-9.00007-5]
Bacakova L, Pajorova J, Zikmundova M, Filova E, Mikes P, Jencova V, et al. Nanofibrous scaffolds for skin tissue engineering and wound healing based on nature-derived polymers. Curr Futur Asp nanomedicine. 2019;1–30. [DOI: 10.5772/intechopen.88602]
Bianchera A, Catanzano O, Boateng J, Elviri L. The place of biomaterials in wound healing. Ther dressings wound Heal Appl. 2020;337–66. [DOI:10.1002/9781119433316.ch15]
Chen S, Zhang Q, Nakamoto T, Kawazoe N, Chen G. Highly active porous scaffolds of collagen and hyaluronic acid prepared by suppression of polyion complex formation. J Mater Chem B. 2014;2(34):5612–9. [DOI: 10.1039/c4tb00780h]
Massarelli E, Silva D, Pimenta AFR, Fernandes AI, Mata JLG, Armês H, et al. Polyvinyl alcohol/chitosan wound dressings loaded with antiseptics. Int J Pharm. 2021;593:120110. [DOI: 10.1016/j.ijpharm.2020.120110]
Cao W, Xia D, Zhou L, Liu Y, Wang D, Liang C, et al. Antibacterial and antioxidant wound dressings with pH responsive release properties accelerate chronic wound healing. Mater Today Phys. 2024;40:101316. [DOI:10.1016/j.mtphys.2023.101316]
Abazari M, Ghaffari A, Rashidzadeh H, Momeni badeleh S, Maleki Y. Current status and future outlook of nano‐based systems for burn wound management. J Biomed Mater Res Part B Appl Biomater. 2020;108(5):1934–52. [DOI: 10.1002/jbm.b.34535]
Sangnim T, Puri V, Dheer D, Venkatesh DN, Huanbutta K, Sharma A. Nanomaterials in the Wound Healing Process: New Insights and Advancements. Pharmaceutics. 2024;16(3):300. [DOI: 10.3390/pharmaceutics16030300]
DOI: https://doi.org/10.32592/10.32592/IJBWR.1.1.34
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Ehsan Ghiasy Nick, Mohsen Shahrousvand, Seyed Armin Fazeli Masouleh, Alireza Feizkhah, Bahar Alizadeh

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.