The emerging role of ChatGPT in cancer and burn research: Applications in wound healing and regenerative medicine
Main Article Content
Abstract
Artificial intelligence (AI) is increasingly shaping biomedical sciences, offering opportunities to accelerate discovery and translation. Chat Generative Pre-trained Transformer (ChatGPT), as a large language model, demonstrates potential to enhance cancer research, tissue repair, and burn care by rapidly synthesizing evidence, generating hypotheses, and supporting decision-making. This review examines ChatGPT’s emerging role in oncology and regenerative medicine, emphasizing the biological parallels between tumor progression and wound healing, including immune modulation, angiogenesis, fibroblast activation, and extracellular matrix remodeling. In oncology, ChatGPT may facilitate the identification of biomarkers, drug discovery, and the development of personalized therapeutic strategies. In regenerative medicine, it can assist in designing biomaterials, optimizing scaffolds, and contextualizing multi-omics data to accelerate tissue engineering. In burn management, ChatGPT shows promise in wound assessment, infection monitoring, fluid resuscitation guidance, scar prediction, and clinical education. To illustrate these applications, we conducted a conceptual simulation of ChatGPT responses in burn care, highlighting its utility for rapid evidence retrieval and training support. Despite these opportunities, ChatGPT faces critical limitations: a lack of domain expertise, contextual misinterpretation, data bias, and reliance on validation by human experts. Ethical challenges, including transparency, data privacy, and clinical reliability, further underscore the need for a cautious approach to integrating these technologies. Overall, ChatGPT should be considered a complementary assistant rather than a replacement for scientific and clinical expertise. With responsible implementation, continuous refinement, and interdisciplinary collaboration, it holds the potential to transform cancer biology, wound healing, and regenerative medicine, ultimately contributing to more precise, efficient, and patient-centered healthcare.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
[1] Ray PP. ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems. 2023;3:121-54. DOI: 10.1016/j.iotcps.2023.04.003
[2] Biswas SS. Role of Chat GPT in Public Health. Ann Biomed Eng. 2023;51(5):868-869. DOI: 10.1007/s10439-023-03172-7
PMID: 36920578
[3] Roumeliotis KI, Tselikas ND. Chatgpt and open-ai models: A preliminary review. Future Internet. 2023;15(6):192.
DOI: 10.3390/fi15060192
[4] Omar M, Ullanat V, Loda M, Marchionni L, Umeton R. ChatGPT for digital pathology research. Lancet Digit Health. 2024;6(8):e595-e600. DOI: 10.1016/S2589-7500(24)00114-6 PMID: 38987117
[5] Saeidian AH, Youssefian L, Naji M, Mahmoudi H, Barnada SM, Huang C, et al. Whole transcriptome-based skin virome profiling in typical epidermodysplasia verruciformis reveals α-, β-, and γ-HPV infections. JCI Insight. 2023;8(5):e162558.
DOI: 10.1172/jci.insight.162558 PMID: 36602881
[6] Faraji N, Vahidnezhad H, Eslami N, Zeinali T, Shenagari M, Shanehbandi D, et al. Role of non-coding RNAs in human-papillomavirus-associated cutaneous neoplasms. Arch Virol. 2025;170(8):170.
DOI: 10.1007/s00705-025-06335-0 PMID: 40581896
[7] Faraji N, Mashkoor NR, Emamifar A, Ghamarsoorat F, Ghalehjoughi ZP, Bajgiran FA, et al. The Cytotoxic Effect of Cobalt Oxide Nanoparticle Conjugated by Menthol on Colorectal Cancer Cell Line and Evaluation of the Expression of CASP8 and FEZF1-AS1. Journal of Cluster Science. 2025;36(2):39.
DOI: 10.1007/s10876-024-02757-z
[8] Faraji N, Almasi M, Mirmazloumi M, Padasht N, Mansouri SS, Ghaderibarmi F, et al. Altered expression patterns of lncRNA MEG3 and LINC01611 in patients with colorectal cancer. Human Gene. 2025:201470. DOI: 10.1016/j.humgen.2025.201470
[9] Eftekhari H, Joukar F, Faraji N, Hassanipour S, Esfandyari A, Naghipour M, et al. Awareness of Skin Cancer in the Prospective Epidemiological Research Studies in Iran Guilan Cohort Study Population. Journal of the Dermatology Nurses' Association. 2024;16(4):143-51. DOI: 10.1097/JDN.0000000000000800
[10] Nasiri S, Faraji N, Kamrava A, Motiei M, Mansouri SS. All about epidermodysplasia verruciformis (EV): An inherited skin disorder. Journal of Current Biomedical Reports. 2023:86-90. DOI: 10.61882/jcbior.4.3.254
[11] Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021;11(4):900-915. DOI: 10.1158/2159-8290.CD-21-0090 PMID: 33811123
[12] Tiwari A, Mishra S, Kuo T-R. Current AI technologies in cancer diagnostics and treatment. Molecular Cancer. 2025;24:1.
DOI: 10.1186/s12943-025-02369-9
[13] Kann BH, Hosny A, Aerts HJWL. Artificial intelligence for clinical oncology. Cancer Cell. 2021;39(7):916-927.
DOI: 10.1016/j.ccell.2021.04.002 PMID: 33930310
[14] Dlamini Z, Francies FZ, Hull R, Marima R. Artificial intelligence (AI) and big data in cancer and precision oncology. Comput Struct Biotechnol J. 2020;18:2300-2311.
DOI: 10.1016/j.csbj.2020.08.019 PMID: 32994889
[15] Hunter B, Hindocha S, Lee RW. The Role of Artificial Intelligence in Early Cancer Diagnosis. Cancers (Basel). 2022;14(6):1524.
DOI: 10.3390/cancers14061524 PMID: 35326674
[16] Lim B, Seth I, Xie Y, Kenney PS, Cuomo R, Rozen WM. Exploring the Unknown: Evaluating ChatGPT's Performance in Uncovering Novel Aspects of Plastic Surgery and Identifying Areas for Future Innovation. Aesthetic Plast Surg. 2024;48(13):2580-2589. DOI: 10.1007/s00266-024-03952-z PMID: 38528129
[17] Abdelhady AM, Davis CR. Plastic Surgery and Artificial Intelligence: How ChatGPT Improved Operation Note Accuracy, Time, and Education. Mayo Clin Proc Digit Health. 2023;1(3):299-308.
DOI: 10.1016/j.mcpdig.2023.06.002 PMID: 40206608
[18] Nosrati H, Nosrati M. Artificial Intelligence in Regenerative Medicine: Applications and Implications. Biomimetics (Basel). 2023;8(5):442.
DOI: 10.3390/biomimetics8050442 PMID: 37754193
[19] Patil S, Moafa IH, Alfaifi MM, Abdu AM, Jafer MA, Raju L, et al. Reviewing the role of artificial intelligence in cancer. Asian Pacific Journal of Cancer Biology. 2020;5(4):189-99.
DOI: 10.31557/apjcb.2020.5.4.189-199
[20] Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput. 2023;14(7):8459-8486. DOI: 10.1007/s12652-021-03612-z PMID: 35039756
[21] Wang J, Cheng Z, Yao Q, Liu L, Xu D, Hu G. Bioinformatics and biomedical informatics with ChatGPT: Year one review. Quant Biol. 2024;12(4):345-359.
DOI: 10.1002/qub2.67 PMID: 39364207
[22] Sharun K, Banu SA, Pawde AM, Kumar R, Akash S, Dhama K, et al. ChatGPT and artificial hallucinations in stem cell research: assessing the accuracy of generated references - a preliminary study. Ann Med Surg (Lond). 2023;85(10):5275-5278.
DOI: 10.1097/MS9.0000000000001228 PMID: 37811040
[23] López-Cortés A, Abarca E, Silva L, Velastegui E, León-Sosa A, Karolys G, et al. Identification of key proteins in the signaling crossroads between wound healing and cancer hallmark phenotypes. Sci Rep. 2021;11(1):17245. DOI: 10.1038/s41598-021-96750-5 PMID: 34446793
[24] MacCarthy-Morrogh L, Martin P. The hallmarks of cancer are also the hallmarks of wound healing. Sci Signal. 2020;13(648):eaay8690. DOI: 10.1126/scisignal.aay8690
PMID: 32900881
[25] Gharibshahian M, Torkashvand M, Bavisi M, Aldaghi N, Alizadeh A. Recent advances in artificial intelligent strategies for tissue engineering and regenerative medicine. Skin Res Technol. 2024;30(9):e70016. DOI: 10.1111/srt.70016 PMID: 39189880
[26] Fu R, Chen Z, Tian H, Hu J, Bu F, Zheng P, et al. A Review on the Applications of Machine Learning in Biomaterials, Biomechanics, and Biomanufacturing for Tissue Engineering. Smart Materials in Medicine. 2025.
DOI: 10.1016/j.smaim.2025.06.003
[27] Shi S, Ou X, Long J, Lu X, Xu S, Li G. The role of multiomics in revealing the mechanism of skin repair and regeneration. Front Pharmacol. 2025;16:1497988.
DOI: 10.3389/fphar.2025.1497988 PMID: 39896077
[28] Liu J, Yang L, Liu D, Wu Q, Yu Y, Huang X, et al. The role of multi-omics in biomarker discovery, diagnosis, prognosis, and therapeutic monitoring of tissue repair and regeneration processes. J Orthop Translat. 2025;54:131-151.
DOI: 10.1016/j.jot.2025.07.006 PMID: 40822515
[29] Boldini D, Friedrich L, Kuhn D, Sieber SA. Machine Learning Assisted Hit Prioritization for High Throughput Screening in Drug Discovery. ACS Cent Sci. 2024;10(4):823-832.
DOI: 10.1021/acscentsci.3c01517 PMID: 38680560
[30] Tabja Bortesi JP, Ranisau J, Di S, McGillion M, Rosella L, Johnson A, et al. Machine Learning Approaches for the Image-Based Identification of Surgical Wound Infections: Scoping Review. J Med Internet Res. 2024;26:e52880.
DOI: 10.2196/52880 PMID: 38236623
[31] Hao H, Xue Y, Wu Y, Wang C, Chen Y, Wang X, et al. A paradigm for high-throughput screening of cell-selective surfaces coupling orthogonal gradients and machine learning-based cell recognition. Bioact Mater. 2023;28:1-11.
DOI: 10.1016/j.bioactmat.2023.04.022 PMID: 37214260
[32] Mittermaier M, Raza MM, Kvedar JC. Bias in AI-based models for medical applications: challenges and mitigation strategies. NPJ Digit Med. 2023;6(1):113. DOI: 10.1038/s41746-023-00858-z PMID: 37311802
[33] Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and AI for health care: A call for open science. Patterns (N Y). 2021;2(10):100347.
DOI: 10.1016/j.patter.2021.100347 PMID: 34693373
[34] Muhammad D, Bendechache M. Unveiling the black box: A systematic review of Explainable Artificial Intelligence in medical image analysis. Comput Struct Biotechnol J. 2024;24:542-560.
DOI: 10.1016/j.csbj.2024.08.005 PMID: 39252818
[35] Budhkar A, Song Q, Su J, Zhang X. Demystifying the black box: A survey on explainable artificial intelligence (XAI) in bioinformatics. Comput Struct Biotechnol J. 2025;27:346-359. DOI: 10.1016/j.csbj.2024.12.027 PMID: 39897059
[36] Ruksakulpiwat S, Kumar A, Ajibade A. Using ChatGPT in Medical Research: Current Status and Future Directions. J Multidiscip Healthc. 2023;16:1513-1520.
DOI: 10.2147/JMDH.S413470 PMID: 37274428
[37] Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large language models in medicine. Nat Med. 2023;29(8):1930-1940. DOI: 10.1038/s41591-023-02448-8 PMID: 37460753
[38] Huang J, Tan M. The role of ChatGPT in scientific communication: writing better scientific review articles. Am J Cancer Res. 2023;13(4):1148-1154. PMID: 37168339
[39] Hassani H, Silva ES. The role of ChatGPT in data science: how ai-assisted conversational interfaces are revolutionizing the field. Big data and cognitive computing. 2023;7(2):62.
DOI: 10.3390/bdcc7020062
[40] Fan L, Li L, Ma Z, Lee S, Yu H, Hemphill L. A bibliometric review of large language models research from 2017 to 2023. ACM Transactions on Intelligent Systems and Technology. 2024;15(5):1-25. DOI: 10.1145/3664930
[41] Perifanis NA, Kitsios F. Investigating the influence of artificial intelligence on business value in the digital era of strategy: A literature review. Information. 2023;14(2):85.
DOI: 10.3390/info14020085
[42] Mao J, Zheng K, Weng X. Editorial: Medical big data in cancer research. Front Mol Biosci. 2024;11:1395607.
DOI: 10.3389/fmolb.2024.1395607 PMID: 38545415
[43] Park YJ, Kaplan D, Ren Z, Hsu CW, Li C, Xu H, et al. Can ChatGPT be used to generate scientific hypotheses?. Journal of Materiomics. 2024;10(3):578-84.
DOI: 10.48550/arXiv.2304.12208
[44] Lee JM. Strategies for integrating ChatGPT and generative AI into clinical studies. Blood Res. 2025;60(1):6.
DOI: 10.1007/s44313-025-00058-6 PMID: 39718704
[45] Ghadarjani R, Gharaei Nejad K. Implanting deep learning models for burn wound assessment. Burns. 2024;50(1):286-287.
DOI: 10.1016/j.burns.2023.11.003 PMID: 38042628
[46] Ghadarjani R, Nejad KG. The future of diagnosis by applying machine learning for predicting inhalation injury in patients with burns. Burns. 2024;50(2):525-526.
DOI: 10.1016/j.burns.2023.09.002 PMID: 38097443
[47] Taib BG, Karwath A, Wensley K, Minku L, Gkoutos GV, Moiemen N. Artificial intelligence in the management and treatment of burns: A systematic review and meta-analyses. J Plast Reconstr Aesthet Surg. 2023;77:133-161.
DOI: 10.1016/j.bjps.2022.11.049 PMID: 36571960
[48] Moradi S, Faraji N, Farzin M, Es Haghi S. An insight into the use of CAR T-cell as a novel immunotherapy, to heal burn wounds. Burns. 2023;49(5):1227-1229.
DOI: 10.1016/j.burns.2022.12.020 PMID: 36646573
[49] Poretsky E, Ziebell A, Berman H. Assessing the performance of generative artificial intelligence for biological database curation. Database (Oxford). 2025;2025:baaf011.
DOI: 10.1093/database/baaf011
[50] Wang D, Chen A, Fang Y, Ma C, Lu Y, Zhou C, et al. Engineering strategies to enhance the research progress of mesenchymal stem cells in wound healing. Stem Cell Res Ther. 2025;16(1):342. DOI: 10.1186/s13287-025-04471-7 PMID: 40598499
[51] Gumede DB, Abrahamse H, Houreld NN. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun Signal. 2024;22(1):244. DOI: 10.1186/s12964-024-01623-9 PMID: 38671406
[52] London AJ. Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Cent Rep. 2019;49(1):15–21. DOI: 10.1002/hast.973
[53] Wang J, Ye Q, Liu L, Guo NL, Hu G. Scientific figures interpreted by ChatGPT: strengths in plot recognition and limits in color perception. NPJ Precis Oncol. 2024;8(1):84.
DOI: 10.1038/s41698-024-00576-z PMID: 38580746
[54] Cahan P, Treutlein B. A conversation with ChatGPT on the role of computational systems biology in stem cell research. Stem Cell Reports. 2023;18(1):1-2. DOI: 10.1016/j.stemcr.2022.12.009 PMID: 36630899
[55] Dario P. ChatGPT talks on science for young people: Cell Biology!: Discover the secrets of life with the help of artificial intelligence. Bookmundo.pt; 2023. ISBN 9789403713281. URL: https://www.google.com/books/edition/ChatGPT_talks_on_science_for_young_peopl/CyblEAAAQBAJ?hl=en
[56] Sallam M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare (Basel). 2023;11(6):887.
DOI: 10.3390/healthcare11060887 PMID: 36981544
[57] Ho JQ, Hartanto A, Koh A, Majeed NM. Gender biases within Artificial Intelligence and ChatGPT: Evidence, sources of biases and solutions. Computers in Human Behavior: Artificial Humans. 2025:100145. DOI: 10.1016/j.chbah.2025.100145
[58] Stalp JL, Denecke A, Jentschke M, Hillemanns P, Klapdor R. Quality of ChatGPT-Generated Therapy Recommendations for Breast Cancer Treatment in Gynecology. Curr Oncol. 2024;31(7):3845-3854. DOI: 10.3390/curroncol31070284 PMID: 39057156
[59] Akdogan O, Uyar GC, Yesilbas E, Baskurt K, Malkoc NA, Ozdemir N, et al. Effect of a ChatGPT-based digital counseling intervention on anxiety and depression in patients with cancer: A prospective, randomized trial. Eur J Cancer. 2025;221:115408. DOI: 10.1016/j.ejca.2025.115408 PMID: 40215593
[60] Eysenbach G. The Role of ChatGPT, Generative Language Models, and Artificial Intelligence in Medical Education: A Conversation With ChatGPT and a Call for Papers. JMIR Med Educ. 2023;9:e46885. DOI: 10.2196/46885 PMID: 36863937
[61] Javaid M, Haleema A, Singh RP. ChatGPT for healthcare services: An emerging stage for an innovative perspective. BenchCouncil Transactions on Benchmarks, Standards & Evaluations. 2023;3(1). DOI: 10.1016/j.tbench.2023.100105
[62] Marchandot B, Matsushita K, Carmona A, Trimaille A, Morel O. ChatGPT: the next frontier in academic writing for cardiologists or a pandora's box of ethical dilemmas. Eur Heart J Open. 2023;3(2):oead007.
DOI: 10.1093/ehjopen/oead007 PMID: 36915398
[63] Duong D, Solomon BD. Analysis of large-language model versus human performance for genetics questions. Eur J Hum Genet. 2024;32(4):466-468.
DOI: 10.1038/s41431-023-01396-8 PMID: 37246194
[64] Dave T, Athaluri SA, Singh S. ChatGPT in medicine: an overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front Artif Intell. 2023;6:1169595.
DOI: 10.3389/frai.2023.1169595 PMID: 37215063
[65] Jeblick K, Schachtner B, Dexl J, Mittermeier A, Stüber AT, Topalis J, et al. ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports. European radiology. 2024;34(5):2817-25. DOI: 10.1007/s00330-023-10213-1
[66] Mu Y, He D. The Potential Applications and Challenges of ChatGPT in the Medical Field. Int J Gen Med. 2024;17:817-826. DOI: 10.2147/IJGM.S456659 PMID: 38476626
[67] Kothari AN. ChatGPT, Large Language Models, and Generative AI as Future Augments of Surgical Cancer Care. Ann Surg Oncol. 2023;30(6):3174-3176. DOI: 10.1245/s10434-023-13442-2 PMID: 37052826
[68] Winden F, Bormann M, Gilbert F, Holzapfel BM, Berthold DP. ChatGPT delivers satisfactory responses to the most frequent questions on meniscus surgery. Knee. 2025;56:249-257.
DOI: 10.1016/j.knee.2025.05.018 PMID: 40479851
[69] Wu Y, Ding X, Wang Y, Ouyang D. Harnessing the power of machine learning into tissue engineering: current progress and future prospects. Burns Trauma. 2024;12:tkae053.
DOI: 10.1093/burnst/tkae053 PMID: 39659561
[70] Li Z, Song P, Li G, Han Y, Ren X, Bai L, et al. AI energized hydrogel design, optimization and application in biomedicine. Mater Today Bio. 2024;25:101014.
DOI: 10.1016/j.mtbio.2024.101014 PMID: 38464497
[71] Pandya S, Alessandri Bonetti M, Liu HY, Jeong T, Ziembicki JA, Egro FM. Burn Patient Education in the Modern Age: A Comparative Analysis of ChatGPT and Google Performance Answering Common Questions on Burn Injury and Management. J Burn Care Res. 2025;46(3):533-541. DOI: 10.1093/jbcr/irae211 PMID: 39761346
[72] Rohrich RN, Li KR, Lava CX, Snee I, Alahmadi S, Youn RC, et al. Consulting the Digital Doctor: Efficacy of ChatGPT-3.5 in Answering Questions Related to Diabetic Foot Ulcer Care. Adv Skin Wound Care. 2025;38(9):E74-E80.
DOI: 10.1097/ASW.0000000000000317 PMID: 40539754
[73] Heerschap C. Use of artificial intelligence in wound care education. Wounds Int. 2023;14(2):12-15 URL: https://woundsinternational.com/journal-articles/use-of-artificial-intelligence-in-wound-care-education/
 
							 
						 
            
         
             
            