Smart dressings and wearable technology: A new era in wound management

Main Article Content

Sara Hassani
Mohadeseh Pakroo
Yasaman Ghafarzadeh
Mina Sadat Naderi
Seyed Mehdi Tabaie

Abstract

Healing a skin wound is an impressive reflection of the body's intricate cellular processes. The repair process is driven by a dynamic interaction among cells, growth factors, and cytokines, working in harmony to close the wound and restore tissue integrity. However, the most significant challenges often arise from the limitations of existing treatment and management methods, which can hinder efficient repair and recovery. These obstacles have inspired advancements in wound care, emphasizing approaches that align more closely with the body's natural healing capabilities. The limitations of traditional wound management have driven the development of innovative wound dressings, which offer improved accuracy, sensitivity, long-term stability, and environmental resilience. These advanced dressings provide clinicians with real-time insights into wound status, enabling them to make prompt and precise treatment decisions that support tissue repair and regeneration. Despite promising advancements, the complexity of wound healing and the challenges of working in challenging environments necessitate further enhancements in sensor performance. This review underscores the potential of intelligent wearable sensors and material innovations in revolutionizing wound management, highlighting the need for personalized treatment approaches to optimize efficiency and minimize risks during the healing process. To support this analysis, a comprehensive review of papers published in the last fifteen years from databases such as Google Scholar, PubMed, and Elsevier has been conducted. The findings emphasize the importance of multidisciplinary research in advancing wound care, offering new avenues for effective patient management and public health monitoring. By integrating wearable sensors and wireless transmission technologies, these comprehensive wound dressings facilitate remote monitoring, early diagnosis, and timely on-demand drug delivery. The investigation of various physicochemical markers—such as temperature, pH, humidity, and inflammatory factors—enables the early detection of wound conditions.

Article Details

Section

Review articles

How to Cite

Hassani, S. ., Pakroo , M. ., Ghafarzadeh, Y. ., Naderi, M. S. ., & Tabaie, S. M. . (2025). Smart dressings and wearable technology: A new era in wound management. Iranian Journal of Burns and Wound Research, 1(3), 133-141. https://doi.org/10.61882/ijbwr.1.3.28

References

[1] Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev. 2019;99(1):665-706. DOI: 10.1152/physrev.00067.2017 PMID: 30475656

[2] Fife CE, Carter MJ. Wound Care Outcomes and Associated Cost Among Patients Treated in US Outpatient Wound Centers: Data From the US Wound Registry. Wounds. 2012;24(1):10-7.

PMID: 25875947

[3] Canchy L, Kerob D, Demessant A, Amici JM. Wound healing and microbiome, an unexpected relationship. J Eur Acad Dermatol Venereol. 2023;37 Suppl 3:7-15. DOI: 10.1111/jdv.18854

PMID: 36635613

[4] Spanos K, Saleptsis V, Athanasoulas A, Karathanos C, Bargiota A, Chan P, et al. Factors Associated With Ulcer Healing and Quality of Life in Patients With Diabetic Foot Ulcer. Angiology. 2017;68(3):242-250. DOI: 10.1177/0003319716651166

PMID: 27225697

[5] Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of Acute and Chronic Wound Healing. Biomolecules. 2021;11(5):700. DOI: 10.3390/biom11050700 PMID: 34066746

[6] Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes. Open Biol. 2020;10(9):200223.

DOI: 10.1098/rsob.200223 PMID: 32993416

[7] Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861-85. DOI: 10.1007/s00018-016-2268-0 PMID: 27180275

[8] Ellis S, Lin EJ, Tartar D. Immunology of Wound Healing. Curr Dermatol Rep. 2018;7(4):350-358. DOI: 10.1007/s13671-018-0234-9 PMID: 30524911

[9] Schreml S, Szeimies RM, Prantl L, Landthaler M, Babilas P. Wound healing in the 21st century. J Am Acad Dermatol. 2010;63(5):866-81.

DOI: 10.1016/j.jaad.2009.10.048 PMID: 20576319

[10] Nguyen HM, Ngoc Le TT, Nguyen AT, Thien Le HN, Pham TT. Biomedical materials for wound dressing: recent advances and applications. RSC Adv. 2023;13(8):5509-5528.

DOI: 10.1039/d2ra07673j PMID: 36793301

[11] Dhivya S, Padma VV, Santhini E. Wound dressings - a review. Biomedicine (Taipei). 2015;5(4):22. DOI: 10.7603/s40681-015-0022-9 PMID: 26615539

[12] Pang Q, Yang F, Jiang Z, Wu K, Hou R, Zhu Y. Smart wound dressing for advanced wound management: Real-time monitoring and on-demand treatment. Materials & Design. 2023;229:111917. DOI: 10.1016/j.matdes.2023.111917

[13] Pang Q, Lou D, Li S, Wang G, Qiao B, Dong S, Ma L, et al. Smart Flexible Electronics-Integrated Wound Dressing for Real-Time Monitoring and On-Demand Treatment of Infected Wounds. Adv Sci (Weinh). 2020;7(6):1902673. DOI: 10.1002/advs.201902673 PMID: 32195091

[14] Wang S, Wu WY, Yeo JCC, Soo XYD, Thitsartarn W, Liu S, et al. Responsive hydrogel dressings for intelligent wound management. BMEMat. 2023;1(2):e12021.

DOI: 10.1002/bmm2.12021

[15] Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37(5):1528-42. DOI: 10.1177/147323000903700531 PMID: 19930861

[16] Hawthorne B, Simmons JK, Stuart B, Tung R, Zamierowski DS, Mellott AJ. Enhancing wound healing dressing development through interdisciplinary collaboration. J Biomed Mater Res B Appl Biomater. 2021;109(12):1967-1985.

DOI: 10.1002/jbm.b.34861 PMID: 34002476

[17] Rani Raju N, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR. Multifunctional and Smart Wound Dressings-A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics. 2022;14(8):1574.

DOI: 10.3390/pharmaceutics14081574 PMID: 36015200

[18] Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. Journal of Applied Polymer Science. 2019;136(27):47738. DOI: 10.1002/app.47738

[19] Liu X, Xu H, Zhang M, Yu DG. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes (Basel). 2021;11(10):770.

DOI: 10.3390/membranes11100770 PMID: 34677536

[20] Venkataprasanna KS, Prakash J, Mathapati SS, Bharath G, Banat F, Venkatasubbu GD. Development of chitosan/poly (vinyl alcohol)/graphene oxide loaded with vanadium doped titanium dioxide patch for visible light driven antibacterial activity and accelerated wound healing application. Int J Biol Macromol. 2021;193(Pt B):1430-1448.

DOI: 10.1016/j.ijbiomac.2021.10.207 PMID: 34742841

[21] Keshvardoostchokami M, Majidi SS, Huo P, Ramachandran R, Chen M, Liu B. Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering. Nanomaterials (Basel). 2020;11(1):21.

DOI: 10.3390/nano11010021 PMID: 33374248

[22] Al-Jbour ND, Beg MD, Gimbun J, Alam AKMM. An Overview of Chitosan Nanofibers and their Applications in the Drug Delivery Process. Curr Drug Deliv. 2019;16(4):272-294.

DOI: 10.2174/1567201816666190123121425 PMID: 30674256

[23] Wu P, Chen D, Yang H, Lai C, Xuan C, Chen Y, et al. Antibacterial peptide-modified collagen nanosheet for infected wound repair. Smart Materials in Medicine. 2021;2:172-81.

DOI: 10.1016/j.smaim.2021.06.002

[24] Salami MS, Bahrami G, Arkan E, Izadi Z, Miraghaee S, Samadian H. Co-electrospun nanofibrous mats loaded with bitter gourd (Momordica charantia) extract as the wound dressing materials: in vitro and in vivo study. BMC Complement Med Ther. 2021;21(1):111.

DOI: 10.1186/s12906-021-03284-4 PMID: 33827547

[25] Milanesi G, Vigani B, Rossi S, Sandri G, Mele E. Chitosan-Coated Poly(lactic acid) Nanofibres Loaded with Essential Oils for Wound Healing. Polymers (Basel). 2021;13(16):2582.

DOI: 10.3390/polym13162582 PMID: 34451121

[26] Ma W, Zhou M, Dong W, Zhao S, Wang Y, Yao J, et al. A bi-layered scaffold of a poly(lactic-co-glycolic acid) nanofiber mat and an alginate-gelatin hydrogel for wound healing. J Mater Chem B. 2021;9(36):7492-7505. DOI: 10.1039/d1tb01039e PMID: 34551047

[27] Patel S, Ershad F, Zhao M, Isseroff RR, Duan B, Zhou Y, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci. 2022;2:9. DOI: 10.20517/ss.2022.13 PMID: 37056725

[28] Tang N, Zheng Y, Cui D, Haick H. Multifunctional Dressing for Wound Diagnosis and Rehabilitation. Adv Healthc Mater. 2021;10(22):e2101292. DOI: 10.1002/adhm.202101292

PMID: 34310078

[29] Wang J, Chen Y, Zhou G, Chen Y, Mao C, Yang M. Polydopamine-Coated Antheraea pernyi (A.pernyi) Silk Fibroin Films Promote Cell Adhesion and Wound Healing in Skin Tissue Repair. ACS Appl Mater Interfaces. 2019;11(38):34736-34743. DOI: 10.1021/acsami.9b12643 PMID: 31518114

[30] Ding X, Tang Q, Xu Z, Xu Y, Zhang H, Zheng D, et al. Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice. Burns Trauma. 2022;10:tkac014. DOI: 10.1093/burnst/tkac014 PMID: 35611318

[31] Jamaledin R, Yiu CKY, Zare EN, Niu LN, Vecchione R, Chen G, et al. Advances in Antimicrobial Microneedle Patches for Combating Infections. Adv Mater. 2020;32(33):e2002129.

DOI: 10.1002/adma.202002129 PMID: 32602146

[32] Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892-923. DOI: 10.1002/jps.21210

PMID: 17963217

[33] Shi C, Wang C, Liu H, Li Q, Li R, Zhang Y, et al. Selection of Appropriate Wound Dressing for Various Wounds. Front Bioeng Biotechnol. 2020;8:182. DOI: 10.3389/fbioe.2020.00182

PMID: 32266224

[34] Alven S, Peter S, Mbese Z, Aderibigbe BA. Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds. Polymers (Basel). 2022;14(4):724.

DOI: 10.3390/polym14040724 PMID: 35215637

[35] Maddah E, Beigzadeh B. Use of a smartphone thermometer to monitor thermal conductivity changes in diabetic foot ulcers: a pilot study. J Wound Care. 2020;29(1):61-66.

DOI: 10.12968/jowc.2020.29.1.61 PMID: 31930943

[36] Kassal P, Kim J, Kumar R, de Araujo WR, Steinberg IM, Steinberg MD, et al. Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochemistry Communications. 2015;56:6-10.

DOI: 10.1016/j.elecom.2015.03.018

[37] Xia J, Sonkusale S. Flexible thread-based electrochemical sensors for oxygen monitoring. Analyst. 2021;146(9):2983-2990.

DOI: 10.1039/d0an02400g PMID: 33949371

[38] Tessarolo M, Possanzini L, Gualandi I, Mariani F, Torchia LD, Arcangeli D, et al. Wireless textile moisture sensor for wound care. Frontiers in Physics. 2021;9:722173.

DOI: 10.3389/fphy.2021.722173

[39] Klonoff DC. Overview of fluorescence glucose sensing: a technology with a bright future. J Diabetes Sci Technol. 2012;6(6):1242-50.

DOI: 10.1177/193229681200600602 PMID: 23294768

[40] Kim B-Y, Lee H-B, Lee N-E. A durable, stretchable, and disposable electrochemical biosensor on three-dimensional micro-patterned stretchable substrate. Sensors and Actuators B: Chemical. 2019;283:312-20. DOI: 10.1016/j.snb.2018.12.045

[41] Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics. 2020;12(8):735. DOI: 10.3390/pharmaceutics12080735

PMID: 32764269

[42] Cheng S, Gu Z, Zhou L, Hao M, An H, Song K, et al. Recent Progress in Intelligent Wearable Sensors for Health Monitoring and Wound Healing Based on Biofluids. Front Bioeng Biotechnol. 2021;9:765987. DOI: 10.3389/fbioe.2021.765987 PMID: 34790653

[43] Borda LJ, Macquhae FE, Kirsner RS. Wound dressings: a comprehensive review. Current Dermatology Reports. 2016;5:287-97. DOI: 10.1007/s13671-016-0162-5