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ABSTRACT

Article info: Healing a skin wound is an impressive reflection of the body's intricate cellular processes. The

iiﬁﬁm‘;gﬁ‘l‘ foe repair process is driven by a dynamic interaction among cells, growth factors, and cytokines,
working in harmony to close the wound and restore tissue integrity. However, the most
significant challenges often arise from the limitations of existing treatment and management
methods, which can hinder efficient repair and recovery. These obstacles have inspired
advancements in wound care, emphasizing approaches that align more closely with the body's

gﬁfxﬁﬂggng natural healing capabilities. The limitations of traditional wound management have driven the

Wearable technology development of innovative wound dressings, which offer improved accuracy, sensitivity, long-

Smart dressings term stability, and environmental resilience. These advanced dressings provide clinicians with

3:::;":2?::“’5““9 real-time insights into wound status, enabling them to make prompt and precise treatment
decisions that support tissue repair and regeneration. Despite promising advancements, the
complexity of wound healing and the challenges of working in challenging environments
necessitate further enhancements in sensor performance. This review underscores the potential
of intelligent wearable sensors and material innovations in revolutionizing wound management,
highlighting the need for personalized treatment approaches to optimize efficiency and
minimize risks during the healing process. To support this analysis, a comprehensive review of
papers published in the last fifteen years from databases such as Google Scholar, PubMed, and
Elsevier has been conducted. The findings emphasize the importance of multidisciplinary
research in advancing wound care, offering new avenues for effective patient management and
public health monitoring. By integrating wearable sensors and wireless transmission
technologies, these comprehensive wound dressings facilitate remote monitoring, early
diagnosis, and timely on-demand drug delivery. The investigation of various physicochemical
markers—such as temperature, pH, humidity, and inflammatory factors—enables the early
detection of wound conditions.
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1. Introduction

The skin, as the largest organ in the human body by
surface area, plays a crucial role in protecting internal
tissues from various external threats, including
mechanical damage, microbial infections, ultraviolet
radiation, and extreme temperatures. Given its
protective function, the skin is particularly susceptible
to injuries, which can have a significant impact on
individual health and the healthcare system as a whole
[1,2]. Skin wounds are a common and serious public
health concern, often leading to complications that
affect patients' quality of life. These injuries can cause
pain, loss of function, reduced mobility, and mental
health issues like depression, anxiety, and social
isolation [3,4].

1.1 Understanding Wound Healing Stages

Cutaneous wound healing is a dynamic and
meticulously regulated process that begins immediately
after an injury and can extend for years. The acute
healing process traditionally unfolds in four overlapping
phases: haemostasis, inflammation, proliferation, and
remodeling [3].

1.1.1 Haemostasis

Haemostasis marks the first phase of healing, kicking
in right after an injury to stem the bleeding. Blood
vessels constrict to reduce blood loss, and clotting
factors form an act as a protective barrier against
bacterial threats [1,3]. This clot also forms a temporary
matrix, supporting the migration of cells later on. It acts
as a reservoir for growth factors essential for healing [5].
The final role is to prevent blood loss, create a scaffold
for immune cells, and guard against infection [6].

1.1.2 Inflammation

During the inflammatory phase, the innate immune
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system responds to clear pathogens from the wound.
Once injured, skin cells, such as keratinocytes and
macrophages, detect danger signals or pathogen-
specific molecules [7].

These molecules are detected by pattern recognition
receptors, such as toll-like receptors (TLRs). This
detection triggers the inflammatory response, drawing
immune cells, such as neutrophils, to the wound site [8].
Moreover, the imbalance between proinflammatory and
anti-inflammatory factors plays a crucial role in
maintaining the persistent inflammation seen in chronic
wound healing [9].

1.1.3 Proliferation

The proliferative phase includes Neoangiogenesis,
Formation of granulation tissue and extracellular matrix
(ECM), and Re-epithelialization [9].

Neoangiogenesis: A critical process in the wound
healing cascade that is essential for optimal recovery
[9].

Formation of granulation tissue and extracellular
matrix (ECM): During the proliferative phase,
nutrients and oxygen become critical due to heightened
metabolic activity. Likewise, macrophages play a
pivotal role in their interaction with fibroblasts, similar
to the process in neoangiogenesis [9].

Re-epithelialization: Re-epithelialization involves
covering the wound surface with a new layer of
epithelium. This process relies on the differentiation,
proliferation, and migration of epidermal keratinocytes

[9].
1.1.4 Remodeling

This phase involves various proteinases that
contribute to the coordinated process of wound healing.
Their activity is regulated by time-dependent and spatial
modifications in expression patterns [9].

1- Haemostasis

4- Remodeling

Stages of Wound

2- Inflammation

3- Proliferation

Figure 1. illustrates the four distinct stages of wound healing, providing a clear visual representation of the complex processes involved. By clearly
outlining these stages, the figure offers a thorough yet approachable explanation of the body's intricate process of responding to and healing from

injury.
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1.2 Innovations and Challenges in Wound
Healing Treatments

Challenges: For many years, traditional dressings
such as cotton wool, lint, and gauze have been widely
used to keep wounds clean and prevent bacterial
infections. However, these dressings tend to adhere to
the wound and do not create an optimal moist
environment. Modern dressings, designed with
improved biocompatibility, degradability, pain relief,
and moisture retention, have been developed to not only
cover wounds but also facilitate the healing process.
These advanced dressings include hydrocolloid,
alginate, hydrogel, foam, and film dressings, which are
commonly used in clinical practice [10,11].

Advancements: Researchers have identified key
wound-related biomarkers and their corresponding
detection thresholds, which are essential for diagnosing
poorly healed wounds caused by bacterial infection and
inflammation. Recent advances in biomarker detection
techniques and sensors have been introduced to aid in
understanding modern wound management. These
state-of-the-art, innovative wound dressings combine
controllable drug delivery, wound monitoring, and on-
demand treatment, offering significant progress and
promising prospects. Nonetheless, many challenges
must be addressed before these innovative wound
dressings can be widely adopted in clinical settings [12].

Current wound dressings, such as films, sponges, and
hydrogels, continue to play a vital role in clinical wound
management. However, these treatments struggle to
provide real-time assessment of the wound condition
while meeting the dynamic needs of chronic wounds
under passive treatment. Prioritizing timely infection
detection and appropriate treatment based on wound
status is crucial in developing next-generation wound
dressings [13].

Advances in material science, particularly in
nanotechnology and biosensing, along with extensive
research into the healing process, have led to the
creation of new functional dressing materials. These
innovative dressings can accelerate wound healing and
monitor various biological parameters at different stages
of healing [14].

1.3 Materials & Methods

To provide a thorough examination of the role of
innovative dressings and wearable technologies in
wound healing, this review employed a systematic and
structured approach to gather, analyze, and synthesize
relevant information. The research focused on recent
advancements in material science, nanotechnology, and
biosensing that have contributed to the development of
innovative dressing materials.

These materials are designed not only to expedite the
healing process but also to facilitate real-time
monitoring of key biological parameters. A
comprehensive literature search was conducted using
established academic databases, including Google
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Scholar, PubMed, and Elsevier. The search was limited
to peer-reviewed articles published in recent years,
ensuring the inclusion of the most up-to-date and
relevant studies. Keywords such as "smart dressings,"
"wound healing," "wearable technology," and
"biosensing in wound care" were carefully selected and
used in combination to refine the search results. Each
retrieved study underwent a critical appraisal process to
assess its relevance, methodology, and contribution to
the topic. Priority was given to articles that detailed
experimental results, technological innovations, or
comprehensive reviews in the field of study. By
synthesizing the findings from these sources, this review
aims to identify trends, highlight key breakthroughs, and
discuss the practical implications of these technologies
in modern wound care.

2. Wound Classification
2.1 Acute Wounds

Wounds resulting from trauma or surgical procedures
generally heal within 30 days, following an orderly
process that restores both anatomical structure and
function. Acute wounds, in particular, heal in a timely
and systematic manner, typically within 5 to 30 days,
and are often the result of trauma or surgery. For
example, a surgical procedure to remove a skin tumor
may leave a non-contaminated wound that cannot heal
by primary intention due to tissue loss. Traumatic
wounds can involve soft tissue or be associated with
bone fractures.

The AO Foundation classification system (originally
derived from the German term “Arbeitsgemeinschaft fiir
Osteosynthesefragen”) is commonly used to evaluate
such injuries, considering the extent of damage to the
skin, muscle, tendon, and neurovascular structures,
which in turn influences the prognosis of the injured
limb [15].

2.2 Chronic Wounds

Chronic wounds are those that fail to progress through
the normal stages of healing in a timely manner, often
due to factors such as infection, tissue hypoxia, or
excessive inflammation. These wounds are more
common in older populations and can include diabetic,
pressure, arterial, and venous ulcers [15].

The healing process in chronic wounds is often
incomplete and disrupted, with prolonged stages of
haemostasis, inflammation, proliferation, or
remodelling. Factors like infection, tissue hypoxia,
necrosis, excess exudate, and high levels of
inflammatory cytokines can contribute to this prolonged
state. A persistent inflammatory environment can
perpetuate a non-healing state, leading to poor
functional and anatomical outcomes and frequent
relapses. Chronic wounds can result from various
causes, including neuropathic, pressure, arterial and
venous insufficiency, burns, and vasculitis [15].
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2.3 Complicated Wounds

Complicated wounds, marked by infection and tissue
defects, present significant challenges due to the
persistent risk of infection and the intricate nature of
tissue damage. Infection remains a constant threat,
influenced by factors such as the virulence and quantity
of microorganisms, local blood supply, and the patient's
immune response. Common signs of infection include
redness, heat, pain, swelling, and limited function.
These wounds can arise from trauma, post-infection
scenarios, or extensive tissue resection, such as in tumor
management. The severity of infection is contingent on
the wound type, surgical technique, and location [15].

3. The Evolution of Wound Dressings

A variety of wound dressings and technologies have
been developed to aid the body in closing wounds and
repairing damaged tissues. Significant advancements in
wound healing technology have often resulted from the
independent efforts of scientists and doctors. However,
collaboration between medical and scientific fields is
essential for translating laboratory discoveries into
effective bedside treatments. Examining the history of
wound dressings highlights that deeper interdisciplinary
collaboration can expedite the development of new
wound-healing technologies [16].

3.1 A Historical Overview of Wound Dressings

Since ancient times, wound care methods and
materials have evolved significantly. Around 2500 BC,
the Mesopotamians documented treatments on clay
tablets and cleaned wounds with milk or water before
applying dressings made of resin and honey. From 460
to 370 BC, Hippocrates in ancient Greece used wine or
vinegar to clean wounds. The Romans made significant
contributions by introducing the four cardinal signs of
inflammation: rubor (redness), tumor (swelling), calor
(heat), and dolor (pain). The advent of antibiotics
marked a substantial advancement in antiseptic
techniques for infection control. By the twentieth
century, modern wound dressings had been developed,
and today, over 5000 wound care products are available
[17,18].

3.2 Progression in Wound Dressings

Wound dressings now come in a wide range of forms
and materials, such as foams, hydrogels, films, and
nanofibers/composites, among others [17].

3.2.1 Foams

Foam dressings are absorbent wound coverings that
come in the form of sheets or filler chips. Their capacity
to absorb exudate depends on their composition and
vapor transmission rate. These dressings offer
protection against trauma and provide thermal
insulation. Reticulated (open-celled) foam, commonly
used in negative pressure wound therapy (NPWT), helps
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remove drainage and debride wounds. However, due to
rapid tissue ingrowth, reticulated foam is not suitable for
intact skin or epithelialization. Hydrophilic foam
dressings, which absorb fluid without the need for
vacuum assistance, can promote epithelial migration
when compressed against the wound surface. It is
important to avoid highly absorbent foams in low-
exudate wounds, as they can cause drying [16].

3.2.2 Hydrogels

Hydrogel dressings are insoluble polymers with high
water content (up to 96%), available in various forms
and compositions, and are being explored for drug
delivery. These dressings maintain a moist wound
environment and can help reduce inflammation.
However, their low absorptive capacity may lead to
exudate accumulation, necessitating the use of a
secondary dressing. Additionally, their small pore sizes
can impede cell migration [16].

Cryogels, a subtype of hydrogels formed at sub-zero
temperatures, possess a macroporous structure that
addresses the limitations of standard hydrogels. Due to
their compressibility and injectability, cryogels are
suitable for hemostatic applications and have
applications in tissue engineering, cosmetics, cell
transplantation, and immunotherapy [16].

3.2.3 Semipermeable Films

Semipermeable films are transparent dressings that
allow gas exchange but are impermeable to liquids and
bacteria.  Their  transparency enables  wound
visualization without the need for removal. These films
permit limited oxygen penetration, which can inhibit the
growth of anaerobic bacteria, but they do not support
tissue growth. While waterproof, they trap fluids, aiding
in autolytic debridement, but they can also cause
exudate buildup and maceration. The "mean vapor
transmission rate" (MVTR), which is influenced by the
material and thickness, determines the rate at which
water vapor escapes. Low MVTR can result in exudate
accumulation, making it an essential factor in film
selection [16].

3.2.4 Nanofibers/Composites

Electro-spun nanofibers are an innovative material
characterized by fibers in the nanometer range,
produced through various techniques such as template
synthesis, phase separation, drawing, self-assembly, and
electrospinning. Among these methods, electrospinning
stands out for its ease of production, simplicity, and
scalability. These characteristics enhance cell
recognition, mimic extracellular matrix (ECM)
structures, and improve protein binding, resulting in
superior biocompatibility [17]. Due to their high
surface-area-to-volume ratio, excellent porous structure,
and flexibility, electro-spun nanofibers are widely used
in medical applications, including as scaffolds for
regenerative medicine, drug delivery systems, and
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wound dressings [19,20]. Various polymers have been
developed into nanofibrous forms to serve as artificial
ECM [21]. Common natural polymers used in electro-
spun nanofibrous scaffolds include chitosan [22],
collagen [23], gelatin [24], and silk. Among synthetic
polymers, polylactic acid [25], poly-lactic-co-glycolic
acid [26], polyglycolic acid, polycaprolactone [24], and
poly-caprolactone/lactide copolymer are the most
frequently utilized.

4. The Complexities of Traditional Wound
Care

Timely and effective management of chronic wounds
is crucial for accelerating healing and alleviating
patients' pain. Traditional wound care approaches
primarily rely on dressings designed to absorb excessive
wound exudate, maintain adequate moisture, and
provide a protective barrier against external threats
[27,28]. Some of these dressings also include anti-
inflammatory  drugs,  antibiotics,  antibacterial
compounds, or angiogenic factors, which are gradually
released into the wound [29]. While traditional methods
have proven effective, they come with notable
limitations. One major drawback is the inability to
monitor the wound bed status and healing rate in real
time, potentially leading to secondary injuries during
dressing changes [27]. Typically, clinicians assess
wounds through visual inspection, wound sampling, or
bacterial cultures, often employing a combination of
these methods. These procedures can be invasive, time-
consuming, and only provide a snapshot of the wound
microbiome at the time of initial sampling. As a result,
these methods may lead to misdiagnosis since the
wound microbiome could have changed by the time
treatment is administered [27].

4.1 Limitations of Traditional Wound Dressings
in Chronic and Acute Wounds

Acute and chronic wound infections have emerged as
a significant global healthcare burden, leading to high
morbidity and mortality rates. Despite extensive
research into the underlying mechanisms of infections
and the widespread use of standard wound management
practices, diagnosing and treating wound infections
remain challenging due to factors such as biofilm
formation, delayed healing, and drug resistance [30].

Acute wounds, which typically heal predictably,
display signs of infection like redness, swelling,
warmth, and pus. On the other hand, chronic wounds,
such as diabetic ulcers, experience slow healing due to
various factors, including aging, diabetes stage,
treatment compliance, peripheral neuropathy, a
weakened immune system, and blood flow issues.
Despite advancements in wound management, scientists
and clinicians are continuously seeking new methods to
prevent and control infections in both acute and chronic
wounds.Acute wounds are generally treated with
antibiotics administered intravenously or orally. In
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contrast, chronic wound infections are often treated with
antimicrobial creams, ointments, or gels designed to
target deep infections [31].

S. Results
5.1 Overview of Smart Wound Dressings

Researchers have developed a range of wearable
devices to monitor human health indicators such as body
temperature, heart rate, blood pressure, blood oxygen
levels, and sweat markers. These advancements have
paved the way for the creation of smart wound
dressings, which incorporate sensors to detect
physicochemical signals crucial to the wound healing
process. These innovative dressings address the
limitations of traditional wound care methods by
providing real-time monitoring and point-of-care
diagnosis. The data collected is transmitted wirelessly,
creating a closed-loop system that enables on-demand
treatment and ultimately enhances healing outcomes
[13].

5.2 The Mechanics of Smart Wound Dressings

Numerous experiments have demonstrated the
effectiveness of wound dressings in wound care and
treatment, consistently highlighting their positive
results. Modern dressings have become a priority in
research and development [32,33]. These advanced
dressings create a moist environment that is essential for
wound healing, pain reduction, and antibacterial effects.
Furthermore, modern wound dressings are often infused
with bioactive components such as antibiotics, growth
factors, herbal extracts, essential oils, antioxidants, anti-
inflammatory agents, and vitamins to enhance
therapeutic outcomes and address the limitations of
traditional dressings. These bioactive components also
serve as crucial elements in drug delivery systems [34].

Smart wound dressings have immense potential, but
their performance in terms of accuracy, sensitivity,
long-term stability, and environmental tolerance needs
significant improvement. The complex nature of wound
healing, coupled with the moist and protein-rich
environment, can compromise the accuracy and
sensitivity of wearable sensors. Furthermore, these
sensors face substantial challenges when operating
under extreme conditions, such as high or sub-zero
temperatures. Early-stage changes in biomarker levels
indicating wound infection tend to be subtle and are
often susceptible to external noise [12].

5.3 Wearable Technology

The shortcomings of conventional wound
management have spurred the creation of smart wound
dressings. These innovative dressings provide clinicians
with a deeper insight into the wound's condition
throughout the healing process, enabling swift and
precise treatment decisions to promote tissue repair.
Researchers have integrated wearable sensors that track
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wound biomarkers, wireless transmission technology,
and sophisticated drug delivery systems into a single,
comprehensive dressing. This facilitates remote, real-
time monitoring, early diagnosis, and timely, on-
demand drug administration [12]. To achieve early
detection of wound conditions, various physicochemical
markers—including  temperature, pH, humidity,
inflammatory factors, toxins, and bacterial enzymes—
are being investigated [13].

Wearable
Monitoring Skin Wounds

5.4 Innovative Solutions  for

5.4.1 pH

There are several methods to determine the pH value
of wound beds, ranging from optical to electrochemical
techniques. In optical methods, pH sensors typically use
chemical species that alter their optical properties in
response to pH changes. Electrochemical pH sensors are
primarily potentiometric and voltammetric. However,
potentiometric measurement is preferred for pH wound
monitoring due to its high reliability and wide sensing
range. Potentiometric sensors work by measuring the
potential generated across two electrodes: the working
electrode and the reference electrode [27].

5.4.2 Temperature

The temperature of the wound environment can be
determined using various sensors, such as infrared
sensors and resistance temperature sensors. Portable
temperature sensing devices based on infrared sensors
are frequently used to provide thermal imaging for
monitoring clinical tissue structures during wound
healing [35].

5.4.3 Glucose

The basic concept of a glucose sensor (biosensor)
hinges on the fact that immobilized glucose oxidase
(GOx) catalyzes the oxidation of glucose by molecular
oxygen, producing gluconic acid and hydrogen
peroxide. This reaction is common to nearly all glucose
sensors based on GOx enzyme sensing. Most studies on
glucose sensing for wound healing rely on fluorescent
glucose sensing. A fluorescence glucose sensor
molecule includes a glucose receptor, a donor
fluorophore, and an acceptor of fluorescent energy or
electrons. When glucose binds to the receptor, the
sensor molecule undergoes a structural change that
separates the fluorescence donor and acceptor, reducing
electron transfer to the donor. This binding decreases
fluorescence resonance energy transfer, resulting in
increased fluorescence [27].

5.4.4 Uric acid

Most uric acid-sensing techniques for wound healing
rely on various types of electrochemical measurements.
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A smart bandage was developed by screen printing an
amperometric biosensor directly onto a wound dressing
to determine uric acid levels [36]. This bandage,
equipped with a biosensor, was connected to a custom-
designed potentiostat that enabled wireless data transfer
of uric acid status to a computer or smartphone using
radio frequency identification (RFID) or near-field
communication (NFC) [27].

5.4.5 Oxygen

Most wearable electronic devices developed for
oxygen sensing in wounds rely on electrochemical
sensors, oximetry, fluorescence, and similar
technologies. A flexible thread-based electrochemical
sensor was created to monitor oxygen levels. This
sensor is minimally invasive and highly flexible,
making it suitable for tissue integration [37].

5.4.6 Moisture

Most research on moisture sensing for wound
monitoring purposes has focused on impedance and
capacitive measurements. A textile sensor based on the
conductive polymer poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate)
(PEDOT:PSS) was developed to monitor the moisture
level of wounds by detecting impedance variations.
These variations span several orders of magnitude
between dry and wet states [38].

5.4.7 Proteins

Immunoaffinity techniques, such as the use of
aptamers and antibodies, are currently employed to
target proteins and are immobilized on electrochemical
biosensors as probes [27]. Key factors associated with
wound healing are presented in Table 1, alongside the
sensors designed to measure them and detailed insights
into their operational mechanisms. The table provides a
clear and comprehensive overview of how innovative
sensor technologies are applied to monitor essential
wound parameters, including pH, temperature,
moisture, oxygen levels, and specific biomolecules,
advancing our understanding of wound care.

6. Discussion

The body's ability to heal skin wounds is a fascinating
display of its unique cellular functions [41]. In recent
advancements, smart wound dressings have emerged,
offering the capability to monitor wound-related
biomarkers in real-time, provide early diagnosis, and
deliver on-demand treatments for conditions such as
bacterial infections and inflammation. These dressings
incorporate wearable sensors, advanced drug delivery
systems, and wireless communication technology,
presenting a significant improvement in wound
management [12].
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Table 1. Sensor Technologies for Monitoring Key Wound Healing Parameters
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Factors Measurement Sensors Sensor Functionality Reference
Potentiometric measurement stands out as a preferred method for pH
pH Potentiometric/ voltammetric monitoring in wound care, offering remarkable reliability and an extensive [27]
sensing range.
. Portable temperature sensing devices utilizing infrared sensors are commonly
Infrared sensors/ resistance . ; . . L . .
Temperature employed to deliver thermal imaging, enabling the monitoring of clinical tissue [35]
temperature sensors B
structures throughout the wound healing process.
When glucose binds to its receptor, the sensor molecule undergoes a structural
Glucose Fluorescence glucose sensor rearrangement that increases the separation between the fluorescence donor and [39]
acceptor, thereby decreasing electron transfer to the donor.
A smart bandage was created by integrating an amperometric biosensor onto a
Uric Acid Amperometric biosensor wound dressing through screen printing, enabling the detection of uric acid [36]
levels.
Electrochemical sensors/ A flexible, thread-based electrochemical sensor was developed to measure
Oxygen oximetry/ fluorescence/ similar oxygen levels. Its high flexibility and minimally invasive design make it well- [37]
technologies suited for seamless integration with tissue.
A textile-based sensor utilizing the conductive polymer PEDOT: PSS was
Moisture Textile sensor designed to monitor wound moisture levels by measuring changes in [38]
impedance.
Immunoaffinity techniques, including aptamers and antibodies, are widely used
Proteins Electrochemical biosensors to target specific proteins and are immobilized on electrochemical biosensors, [40]

serving as effective probes.

Clinicians require smart wound dressing systems that
can offer real-time updates on wound status and enable
remote-controlled treatments. With wireless
transmission technologies like Bluetooth, near-field
communication, and radio frequency identification,
sensors within these dressings can collect biomarker
data and transmit it to mobile devices such as
smartphones, allowing patients to monitor their wounds
from home [12]. The development and design of
wearable intelligent sensors hold substantial promise for
public health monitoring and healthcare applications.
Although this field is still in its nascent stages,
foundational research in the interdisciplinary area of
wearable sensing is well-established. Intelligent
wearable sensors provide unprecedented data and
convenience, aiding in the effective management of
patient wounds. These advanced dressing sensors offer
real-time information about wound characteristics to
both doctors and patients [42].

Innovations in new material platforms for modern
dressings have led to significant product advancements,
as demonstrated by positive test results. The current
trend in developing ideal dressings focuses on
combining materials with exceptional benefits crucial
for the wound healing process [10,43].

7. Conclusion

The primary goal of all wound care is to achieve
complete and timely wound closure, though this is not
always achievable. Chronic wounds, in particular,
present significant challenges for effective treatment.
Most clinical guidelines continue to evolve due to
ongoing advancements in wound pathology, healing
processes, and therapeutic agents. Wound management
is inherently complex, with the success of treatment
dependent on various factors, including accurate

diagnosis, patient comorbidities, anatomical location,
physiological status, and wound size. Hence, it is
generally recommended that dressing selection be
tailored to the specific needs of the wound and patient,
guided by the expertise of physicians specializing in
wound treatment.

This personalized approach ensures that patients
receive the most appropriate treatment tailored to their
unique situation, thereby maximizing efficacy and
minimizing unnecessary risks during the healing
process.
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